300 research outputs found

    MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models

    Get PDF
    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEv​al/downloads

    Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides

    Get PDF
    Pseudomonads are cosmopolitan microorganisms able to produce a wide array of specialized metabolites. These molecules allow Pseudomonas to scavenge nutrients, sense population density and enhance or inhibit growth of competing microorganisms. However, these valuable metabolites are typically characterized one-molecule–one-microbe at a time, instead of being inventoried in large numbers. To index and map the diversity of molecules detected from these organisms, 260 strains of ecologically diverse origins were subjected to mass-spectrometry-based molecular networking. Molecular networking not only enables dereplication of molecules, but also sheds light on their structural relationships. Moreover, it accelerates the discovery of new molecules. Here, by indexing the Pseudomonas specialized metabolome, we report the molecular-networking-based discovery of four molecules and their evolutionary relationships: a poaeamide analogue and a molecular subfamily of cyclic lipopeptides, bananamides 1, 2 and 3. Analysis of their biosynthetic gene cluster shows that it constitutes a distinct evolutionary branch of the Pseudomonas cyclic lipopeptides. Through analysis of an additional 370 extracts of wheat-associated Pseudomonas, we demonstrate how the detailed knowledge from our reference index can be efficiently propagated to annotate complex metabolomic data from other studies, akin to the way in which newly generated genomic information can be compared to data from public databases

    Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Get PDF
    BACKGROUND:Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function). However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns.RESULTS:In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein).CONCLUSIONS:The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their functio

    IFN-γ Rα Is a Key Determinant of CD8+ T Cell-Mediated Tumor Elimination or Tumor Escape and Relapse in FVB Mouse

    Get PDF
    During the past decade, the dual function of the immune system in tumor inhibition and tumor progression has become appreciated. We have previously reported that neu-specific T cells can induce rejection of neu positive mouse mammary carcinoma (MMC) and also facilitate tumor relapse by inducing neu antigen loss and epithelial to mesenchymal transition (EMT). Here, we sought to determine the mechanism by which CD8+ T cells either eliminate the tumor, or maintain tumor cells in a dormant state and eventually facilitate tumor relapse. We show that tumor cells that express high levels of IFN-γ Rα are eliminated by CD8+ T cells. In contrast, tumor cells that express low levels of IFN-γ Rα do not die but remain dormant and quiescent in the presence of IFN-γ producing CD8+ T cells until they hide themselves from the adaptive immune system by losing the tumor antigen, neu. Relapsed tumor cells show CD44+CD24- phenotype with higher rates of tumorigenesis, in vivo. Acquisition of CD44+CD24- phenotype in relapsed tumors was not solely due to Darwinian selection. Our data suggest that tumor cells control the outcome of tumor immune surveillance through modulation of the expression of IFN-γ Rα

    PP2A/B55 and Fcp1 regulate Greatwall and Ensa desphorylation during mitotic exit

    Get PDF
    Entry into mitosis is triggered by activation of Cdk1 and inactivation of its counteracting phosphatase PP2A/B55. Greatwall kinase inactivates PP2A/B55 via its substrates Ensa and ARPP19. Both Greatwall and Ensa/ARPP19 are regulated by phosphorylation, but the dynamic regulation of Greatwall activity and the phosphatases that control Greatwall kinase and its substrates are poorly understood. To address these questions we applied a combination of mathematical modelling and experiments using phospho-specific antibodies to monitor Greatwall, Ensa/ARPP19 and Cdk substrate phosphorylation during mitotic entry and exit. We demonstrate that PP2A/B55 is required for Gwl dephosphorylation at the essential Cdk site Thr194. Ensa/ARPP19 dephosphorylation is mediated by the RNA Polymerase II carboxy terminal domain phosphatase Fcp1. Surprisingly, neither Fcp1 nor PP2A appear to essential to dephosphorylate the bulk of mitotic Cdk1 substrates following Cdk1 inhibition. Taken together our results suggest a hierarchy of phosphatases coordinating Greatwall, Ensa/ARPP19 and Cdk substrate dephosphorylation during mitotic exit

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products

    Biosynthetic Gene Cluster for the Cladoniamides, Bis-Indoles with a Rearranged Scaffold

    Get PDF
    The cladoniamides are bis-indole alkaloids isolated from Streptomyces uncialis, a lichen-associated actinomycete strain. The cladoniamides have an unusual, indenotryptoline structure rarely observed among bis-indole alkaloids. I report here the isolation, sequencing, and annotation of the cladoniamide biosynthetic gene cluster and compare it to the recently published gene cluster for BE-54017, a closely related indenotryptoline natural product. The cladoniamide gene cluster differs from the BE-54017 gene cluster in gene organization and in the absence of one N-methyltransferase gene but otherwise contains close homologs to all genes in the BE-54017 cluster. Both gene clusters encode enzymes needed for the construction of an indolocarbazole core, as well as flavin-dependent enzymes putatively involved in generating the indenotryptoline scaffold from an indolocarbazole. These two bis-indolic gene clusters exemplify the diversity of biosynthetic routes that begin from the oxidative dimerization of two molecules of l-tryptophan, highlight enzymes for further study, and provide new opportunities for combinatorial engineering

    Unregulated miR-96 Induces Cell Proliferation in Human Breast Cancer by Downregulating Transcriptional Factor FOXO3a

    Get PDF
    FOXO transcription factors are key tumor suppressors in mammalian cells. Until now, suppression of FOXOs in cancer cells was thought to be mainly due to activation of multiple onco-kinases by a phosphorylation-ubiquitylation-mediated cascade. Therefore, it was speculated that inhibition of FOXO proteins would naturally occur through a multiple step post-translational process. However, whether cancer cells may downregulate FOXO protein via an alternative regulatory mechanism is unclear. In the current study, we report that expression of miR-96 was markedly upregulated in breast cancer cells and breast cancer tissues compared with normal breast epithelial cells (NBEC) and normal breast tissues. Ectopic expression of miR-96 induced the proliferation and anchorage-independent growth of breast cancer cells, while inhibition of miR-96 reduced this effect. Furthermore, upregulation of miR-96 in breast cancer cells resulted in modulation of their entry into the G1/S transitional phase, which was caused by downregulation of cyclin-dependent kinase (CDK) inhibitors, p27Kip1 and p21Cip1, and upregulation of the cell-cycle regulator cyclin D1. Moreover, we demonstrated that miR-96 downregulated FOXO3a expression by directly targeting the FOXO3a 3′-untranslated region. Taken together, our results suggest that miR-96 may play an important role in promoting proliferation of human breast cancer cells and present a novel mechanism of miRNA-mediated direct suppression of FOXO3a expression in cancer cells

    Live cell dynamics of production, explosive release and killing activity of phage tail-like weapons for Pseudomonas kin exclusion.

    Get PDF
    Interference competition among bacteria requires a highly specialized, narrow-spectrum weaponry when targeting closely-related competitors while sparing individuals from the same clonal population. Here we investigated mechanisms by which environmentally important Pseudomonas bacteria with plant-beneficial activity perform kin interference competition. We show that killing between phylogenetically closely-related strains involves contractile phage tail-like devices called R-tailocins that puncture target cell membranes. Using live-cell imaging, we evidence that R-tailocins are produced at the cell center, transported to the cell poles and ejected by explosive cell lysis. This enables their dispersal over several tens of micrometers to reach targeted cells. We visualize R-tailocin-mediated competition dynamics between closely-related Pseudomonas strains at the single-cell level, both in non-induced condition and upon artificial induction. We document the fatal impact of cellular self-sacrifice coupled to deployment of phage tail-like weaponry in the microenvironment of kin bacterial competitors, emphasizing the necessity for microscale assessment of microbial competitions
    corecore